5th Annual RCCADS Workshop

Al-Guided Integrative Vehicle Safety through Pre-crash and Crash Simulations

Jingwen Hu, PhD Associate Director & Research Professor

Wenbo Sun, PhD Assistant Research Scientist

May 21, 2025 | East Liberty, OH

Background

Motivation – Why Integrated Safety?

- **Problem #1:** About 90% of crashes involve human error, yet most crash tests and models ignore pre-crash behavior.
- **Problem #2:** Current pre-crash safety algorithms focus on crash avoidance, but do not consider potential injury outcomes if a crash is inevitable.

 Research Gap: Traditional approaches treat pre-crash and crash as separate silos

• **Research Need:** Holistic decision making considering both pre-crash and crash conditions and outcomes simultaneously.

Pre-Crash Simulation Examples

Parametric Human Body Models

Active Human Body Model

Occupant Factors

What Affects Crash Outcomes?

Vehicle Factors

Occupant Characteristics

Sex, BMI, body shape, bone strength, ...

Restraint Parameters

Pre-tensioning, load limit, inflation pressure...

Posture

Torso recline & flexion, LX position, rotation, ...

Seat Position Fore-aft/vertical/cushion angle

> Belt Fit Shoulder & lap

Pre-Crash Maneuver AEB, FCW, lane change, ...

Restraint Geometry

Belt anchorage & knee bolster locations, airbag size & shape...

Vehicle Interior Geometry

Steering wheel & dash locations, pillars, header, ...

Crash Pulse Direction, magnitude, phases

Crash Factors

Early Work: Field Capability

Computational Modeling

Integration of Active and Passive Safety

Naturalistic Driving Data Analysis

Head location	Injury Risk Reduction	
	ATD Model	Human Model
Head forward	43%	58%
Head neutral	14%	47%
Head rearward	13%	44%
Weighted average	17%	48%

Hu et al. 2015 Stapp

Pre-Crash Posture and Occupant Size Effects

Head to IP contact

LX concerns Boyle et al. 2020 TIP

Design Optimizations Addressing Different Needs

$$a^{*} = \underset{a \in \mathcal{A}}{\operatorname{arg\,min}} \mathbb{E}_{s} \left[f\left(s, a(s)\right) \right]$$
$$= \underset{a \in \mathcal{A}}{\operatorname{arg\,min}} \int_{s \in \mathcal{S}} f\left(s, a(s)\right) p\left(s\right) ds,$$

d = a(s) Design policy

s: Occupant and crash covariates *p* (*s*): Occupant weighting function

Sun et al. 2023 Frontiers

Gaussian Process (GP) Model & Inducing Points

Inducing points: representative subjects that accounts for population variation

Gaussian Process Surrogate Model

Sun et al. 2024 AAAM

Adaptive Design Optimization Results

The adaptive designs are associated with lower means and standard deviations of injury risks compared to the baseline design.

Sun et al. 2024 AAAM

Pedestrian Pre-Crash Simulation Example #1

Test Setting: Walking Pedestrian

AEB Setting: TTC threshold: 1000 ms; AEB braking g-force: 0.5; Pedestrian Speed: 5km/h.

Vehicle stats: SUV, initial speed: 50 km/h; hitting speed: 39.97 km/h.

Subject info: Female, 1.65m, Age 30, BMI 22.

Injury Risks [head, chest, femur, tibia] (%): [11.01, 38.50, 79.77, 27.45]

Pjoint: 91.97%

Frame: 163 collision: 1245 current_simulat_time: 164 e_veloc: 49.999768 TTC: 1180.0 TTC_threshold: 1000.0 pedestrian_velocity: 5.0 delay_count: 0 / 0 delay_threshold TTC less than 200: False SAW_WALKER_cam1: 0 SAW_WALKER_cam4: 0 GLOBAL_BRAKE: 0 apply_brake: 0

Pedestrian Pre-Crash Simulation Example #2

Test Setting: Walking Pedestrian

AEB Setting: TTC threshold: 1000 ms; AEB braking g-force: 0.3; Pedestrian Speed: 5km/h.

Vehicle stats: SUV, initial speed: 40 km/h; hitting speed: 26.17 km/h.

Subject info: Female, 1.65m, Age 30, BMI 22.

Injury Risks [head, chest, femur, tibia] (%): [0.01, 17.54, 1.05, 11.96]

Pjoint: 27.78%

Frame: 124 collision: -999 current_simulat_time: 1.25000000000000 e_veloc: 4.110509 TTC: 18699.97 TTC_threshold: 1000.0 pedestrian_velocity: 5.0 delay_count: 0 / 0 delay_threshold TTC less than 200: False SAW_WALKER_cam1: 0.0 SAW_WALKER_cam4: 0 GLOBAL_BRAKE: False apply_brake: False

Integrative Pedestrian Safety Device Triggering Algorithm

Trigger the airbag for minor crashes

Fail to trigger the airbag for severe crashes

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

TeraSim Architecture

⁽AV collisions/mile, etc.)

TeraSim is a traffic environment simulator that provides:

- NDE: Interactive naturalistic traffic environment learned from real world
- Adversities: Diverse stochastic challenging events
- NADE: Adversity orchestrator to intelligently challenge the AV
- Integration: API for seamless integration with existing simulators

Challenges

- Improve realism of AI-generated behavior
- Validation against real crash data
- Consider sensing accuracy and robustness

Ultimately, integrated safety is not about a single simulation or a single algorithm, It's about creating a continuous feedback loop that connects how we avoid crashes, how we survive them, and how we learn from every outcome. By combining AI, computational models, and design optimizations, we pave the way for smarter and more adaptive safety designs.

Acknowledgements

Contact: Jingwen Hu, PhD, jwhu@umich.edu