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Occupant Classification by Seatbelt

Background and methodology
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Background

= Simulation results shows body size variability influences
crash injuryrisk in the generic car restraint system

= An adaptiverestraint system can reduce injury risk

- Finetuned seatbelt force
- Finetuned airbag fire timing

= Classification of occupant:

- Estimate height and weight of occupants

= We wantto develop a camera-free and
low power consumption monitoring system

- Works alone or with a camera-based system
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Methodology

Seatbelt wrap around human (upper) body

Body shape determines seat belt spatial shape

The inverse problem: space shape to estimate body shape

= To estimate seatbelt space shape, we need to know:

- The 3 fixations of the belt
- Can be different between belt-in-seat and b-pillar installation
Length of webbing between the 3 fixations:

- Diagonal belt
- Lap belt

Seat belt extension direction:
- Near outlet (belt-in-seat)

- D-ring (b-pillar)
- Near buckle
Belt tension: existence of webbing slack

Sitting posture
- Off-position
- Panand back’s position and inclination
- Indicates quality of the belt routing (b-pillar)
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Occupant Classification by Seatbelt

Body size estimation in Belt-In-Seat

— Configuration

— Field test

— Linear regression
- Machine learning
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Belt-In-Seat: Configuration

= Test passenger seat

- Seat pan and back are fixed

" |nstrumentation

- Payoutlength sensor:
— Bobbin rotation sensor (BRS) in retractor
- One for diagonal belt, one for lap belt
Shoulder belt angle sensor
Diagonal belt angle sensor
Buckle tension: BTS sensor

Shoulder belt
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Stop and reverse
around corner

Belt-In-Seat: Field Test

Reach for item in

= Measurementin driving back seat(no stop)

= Drive alongthe assigned route

5 T-Crossing
~ complete stop,
look left and right

= Different tasks were executed in predefined
spot
= Record sensor data

. Reach for item in
glove box(no stop)
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Belt-In-Seat: Linear Regression

= Due to a sensor issue, lap belt length only be valid for 6
participants, diagonal belt length is valid for all

= Diagonalbeltlength to weight model

= Min and max of diagonal belt length during “normal use” as
input data:

- Two data points from each participant
- Errands period data is excluded

= Max error from regression line within test group: 11.9 kg

= Standard deviation for weight estimation:5.77 kg

Diagonal BRS data, Occupant 74.0 kg, 176.0 cm
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Belt-In-Seat: Linear Regression

= Follow up analysis of lap beltlength

= Diagonalbeltlength and lap belt length as input

Diagonal Only

Max. Error

12,1 kg

Std. Dev.

5,53 kg

Combined Length
13,1 kg

6,75 kg

= Diagonal belt length gives most accurate estimation while

lap belt length doesn’t bring in clear benefit.
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Belt-In-Seat: Linear Regression

Large size Medium size
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Belt-In-Seat: Machine Learning

= Decision tree regression model: XGBoost

= 18 Features:

- Mean and standard deviation over 2 s moving window:
- Payoutdiagonallength

- Payoutangle

- Diagonal buckle angle

- Buckle tension.

- Acceleration

= Accuracy level:

- Average height error:~5cm
- Average weighterror:~ 5 kg

= Featureanalysis:
- SHAP (SHapley Additive exPlanations) analysis:
value connects to contribution
- Suggest minimum model of features:
- Payoutangle mean
- Payoutdiagonal length mean
- Diagonal buckle angle mean
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Occupant Classification by Seatbelt

= Body size estimation in B-pillar mounted seatbelt

— Configuration

— Static car test

— Simulation test

— Machine learning
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B-pillar Belt: Configuration

= Mainstreamconfigurationin the market Payout (D-ring) angle Payout length
= B-pillar outlet and floor fixation $ -~/ N /
- Seat position affects measurement \é/ l ( / \ ’_:\ —,
- Payoutlength changes while seat is moved RYAS " \
= Instrumentation T\ [ \ | ‘
— Belt sensors: "% R/ P —\>
: : - W e,
- Payoutangle sensor: rotation of D-ring ‘,l 1 | NN ‘*\
- Retractor provides total length \\ ‘ \,,__'A*'\ (\ NP ,
| s
- Invented lap belt sensor: lap belt length and lifting angle (ongoing) \ | D :—_r /i.z
— Seatsensors: = /““——:/ '.
o
- Pan position: front-back and height ° S— ,
- Seat back inclination angle > ~ ~,
Front-back ' _
LS H
)4 =
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B-pillar Belt: Static car test

= Participantssit still on the seat and buckled on

= Test PC controls the seat moves to different pan and back

13 participants data are collected

position automatically

= At each seat and back positionstop for 5s to collect data.
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B-pillar Belt: Machine Learning

= XGBoost decision tree model

= Featuresare sampled mean and standard
deviation when seat stops:
- Payoutlength: diagonal, lap
- Payout (D-ring) angle
- Buckle tension
- Seat pan height
- Seat pan forward-backward position
- Seat back inclination angle

= Preliminary result:

- Prediction of all 100 seat positions for each participant
- Prediction in general is not satisfactory

- Weight prediction seems better for medium group

- Small dataset leads to week performance
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B-pillar Belt: Simulation Test

Motivation:

- Understand influence of body shape and seat position towards belt

shape

- Generate data of rare body size

Automated belt routingin pre-processing software ANSA

Human body model: SAFER HBM

UMTRI morphing method: parametrichuman body model

morphing
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B-pillar Belt: Simulation Evaluation

Simulate belt routing of participants “daily” seat position

Compare payoutlength between simulationand car test

Simulated payoutlength longer than test measurement:
- 19~ 105 mmlonger

Possible source of discrepancy:

- Inconsistency between the car body and the CAD model
- Differences in body shape:
- Softtissue: checked by laser scanning
- Athletic staturevs. HBM population average
- Belt routing
- Sitting posture: more straight up or more slack
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Occupant Classification by Seatbelt

Conclusion and next step
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Conclusion and Next Step

= Conclusion:

- Belt based body estimation is possible
- Inbelt-in-seat configuration the result is satisfactory
- Data distribution is important to the prediction accuracy

= Next step:

- Continue data collection in the car test

— Driving car test on the test track

- Considerintroduce more variancein HBM shape and sitting posture
- Create data by simulations
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