State of Knowledge on Upper Extremity Injury Causation and Injury Prediction

Ayush Mehta, Jason Forman, Bronislaw Gepner, John Paul Donlon

RCCADS Workshop 05/21/2025

Upper Extremity Injuries

- Among the most common injury types (Forman et al. 2019, Craig et al. 2024)
- ► Have not decreased in modern vehicles (Forman et al. 2019)
- Most AIS2+ upper extremity injuries are fractures
- Carry substantial risk of long-term disability
- AIS2: 35% risk of some long-term impairment (Malm et al. 2008)

Upper Extremity Injuries

CISS 2017-2022 Belted Frontals, Single Event (weighted)

<u>Upper Extremity Injuries are Not Unique to Drivers</u>

Upper Extremity Injuries

Distribution of AIS2+ Upper Extremity Injuries

	Driver	RFP
shoulder & clavicle	18.8%	13.9%
upper arm	9.9%	19.4%
forearm	29.3%	30.6%
wrist	43.6%	41.7%
hand & finger	18.2%	13.9%
other	2.2%	5.6%

CISS 2017-2022 Belted Frontals, Single Event, Airbag Deployed (unweighted)

Right Front Passenger – Airbag Deployed

<u>Upper Extremity Injury Types Very Similar between</u> <u>Drivers and Right Front Passengers</u>

Remaining Questions

- What other upper extremity research is available?
- Field data studies
- Biomechanics studies
- What should be targeted for prediction and prevention?
- Injury types
- Risk factors
- Injury mechanisms
- Causation scenarios
- What are the potential abilities of current tools?
 - ATD and HBM
 - Construction
- Validation
- Injury prediction capability

Literature Review

Field Data Analysis and Case Review

Review of Current Tools

University of Virginia

CISS 2017-2022

- ▶ 34,873 total occupants
 - Exclude:
 - Age<13 (-2,585)
 - Rollover (-3,258)
 - Fire (-4,278)
 - Ejected (208)
 - No 3 point belt (-6,902)
 - Remain: 17,642 occupants
 - Represents 16 million
 - 77% Drivers
 - 54% Female

CISS 2017-2022

- Focus on single-event crashes
 - 9,814 occupants
 - 894 with AIS2+ Injury
 - 9.1% of Exposures (3.5% weighted)
 - 303 AIS3+
 - 265 with AIS2+ UX Injury
 - 30% of AIS2+ Inj. Cases
 - 2.7% of Exposures (0.9% weighted)

	% of UX In	jury Cases		
	Shoulder	26.8% —	→ 67% Clavicle	
	Upper Arm	6.8%	۲	1 300
	Elbow	7.9%	Shoulder	7
	Forearm	21.9%	Upper Arm	1
	Wrist	38.5%	ا ا	
	Hand/Finger	15.5%	Elbow -	>
	UX Other	3.8%	[]	
			Forearm -	
91			Wrist -	
		20	Hand/	

Driver vs. Passenger (Single Event)

- Driver
 - 7,563 Occupants
 - 713 AIS2+ (9.4%)
 - 218 UX AIS2+ (2.9%)
 - 85% Frontal Airbag
 Deployment (compared to 72% for all AIS2+)

- Right Front Passenger
 - 1,760 Occupants
 - 155 AIS2+ (8.8%)
 - 41 UX AIS2+ (2.3%)
 - 88% Frontal Airbag
 Deployment (compared to 68% for all AIS2+)

	Driver	Passenger
Shoulder	27.1%	24.4%
Upper Arm	6.0%	9.8%
Elbow	7.3%	12.2%
Forearm	22.5%	19.5%
Wrist	38.5%	39.0%
Hand/Finger	16.1%	12.2%
UX Other	3.2%	7.3%

ΔV (Single Event)

PDOF (Single Event)

PDOF (Single Event)

$$ISS = (MAIS_1)^2 + (MAIS_2)^2 + (MAIS_3)^2$$

MAIS_i = Max AIS Score in Each of 3 Body Regions

ISS (Single Event)

Lessons learned (so far)*

- Upper extremity injuries are present in 30% of AIS2+ injury cases
 - Similar rate compared to AIS 2+ ribcase fx., lower extremity injury, brain injury
 - Most common: Wrist (39%), Shoulder (27%), Forearm (22%), Hand/Finger (16%)
- Similar upper extremity injury risks, injury distributions for drivers and right front passengers
 - Most in frontal impacts
 - Most with frontal airbag deployment (85-88%; compared to 68-72% for all AIS2+ inj. cases)
- Upper extremity injury cases tend to follow collision and occupant exposures, with some apparent shifts:
 - Wrist higher BMI, shorter females, many cases as sole AIS2 injury
 - Shoulder advanced age, nearside (though many still frontal), shift towards multi-trauma
 - Forearm higher BMI, mid-sized stature
 - Elbow relatively rare, and most cases that do occur are frontals

University of Virginia

2016 Sedan (Full Size)

59 y.o. female Right Front Passenger 173 cm 101 kg 33.7 BMI, ISS = 6 MAIS Rating: 2 EDR $\Delta V = N/A$ $\Delta V = 28$ kmph, 340° PDOF

L. Distal radius fracture-> partial articular; Colles
L. Superior Teeth facial fx.
Hematoma – L. wrist, L. chest, L. face

University of Virginia

2016 Sedan (Full Size)

59 y.o. female Right Front Passenger 173 cm 101 kg 33.7 BMI, ISS = 6 MAIS Rating: 2 EDR $\Delta V = N/A$ $\Delta V = 28$ kmph, 340° PDOF L. Distal radius fracture-> partial articular; CollesL. Superior Teeth facial fx.Hematoma – L. wrist, L. chest, L. face

Center for Applied Biomechanics

Exemplar Frontal-Oblique Crash Test (NHTSA Research Test)

Remaining Questions

- What other upper extremity research is available?
- Field data studies
- Biomechanics studies
- What should be targeted for prediction and prevention?
- Injury types
- Risk factors
- Injury mechanisms
- Causation scenarios
- What are the potential abilities of current tools?
- ATD and HBM
- Construction
- Validation
- Injury prediction capability

Literature Review

Field Data Analysis and Case Review

Review of Current Tools

State of Knowledge on Upper Extremity Injury Causation and Injury Prediction

Thank You RCCADS!

Questions?

Email: pkz2bn@virginia.edu

Email: jlf3m@virginia.edu

Ayush Mehta, Jason Forman, Bronislaw Gepner, John Paul Donlon University of Virginia Center for Applied Biomechanics

Age (Single Event)

Stature (Single Event)

BMI (Single Event)

University of Virginia

BMI (kg/m2)

