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Introduction
Why Human Body Models (HBMs)?

* Human response risk for omni-directional loading.

* Assessment of vulnerable populations
* Aged persons, female, varying anthropometrics.
* Understanding population variability.
* Tissue-level injury risk
* Assess injury at the tissue level where injury occurs.
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Introduction

* Finite element Human Body Models (HBM)
have the potential to predict injury risk in
impact scenarios, with the aim to predict tissue-
level injury.

* Prediction of loading, fracture initiation, and
post-fracture response of hard tissues are
critical to evaluate injury risk to adjacent or
underlying soft tissues.

Gierczycka 2021

* Existing cortical bone constitutive models
are often limited to tension-based fractures.
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Introduction — FE Model Requirements

e Material properties R %Q\ x

e Constitutive models

A balanced approach is required.

Potential for

Response

Kinetic/Kinematic

o o= =
g bdb

¢ Mesh refinement
¢ Relevant anatomical
structures

¢ Force, Deformation or
related quantities

@ )I M Mc eRepresentative .

* Coupling




Introduction — FE Model Requirements
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v & V a n d l | Q ASME V&V 10-2006, “Guide for Verification and Validation in Computational Solid Mechanics”

» Verification, Validation and Uncertainty Quantification (V&V and UQ)
« Assessment using existing data sets Start 7 Bxpermental \

Uncertainty
VERIFICATION VALIDATION

Quantification Verification
Represent real world

\ Validation \Aj
scenarios ( \\
\
I
/
CALIBRATION UNCERTAINTY L’

Enhancement
Adjust material properties

Mathematical accuracy

(optional)

. . -
CORrelation and Analysis (CORA) <«
Partnership for Dummy Technology and Biomechanics, Ingolstadt, Germany http://www.pdb-

Qu a nt|fy an d red uce org.com/en/information/18-cora-download.html

and model parameters

uncertainty * Provides an objective rating between model prediction and
experimental data (Corridor and Cross Correlation yMethods)
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Introduction

 Mechanical properties

Orthotropic (osteon vs transverse directions)
Deformation rate effects (compression)
Tension/compression asymmetry

Damage accumulation, fracture

* Fracture patterns
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Correspond to mode of loading
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Continuum Damage Mechanics Fracture
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Elastic

Strain Adapted from Gupta 2008



Constitutive Models

* Metal plasticity models - most common:
* Shear properties/strength are related to ——
tension properties through yield surface Cl L PP
and flow rule.
e Can predict tension-based failure, but not
shear or mixed mode.

Bending

Torsion

e Cortical bone is transversely isotropic with
asymmetric properties in tension and

L
CO p re S S I O n * Khor F, Cronin DS, Watson B, Gierczycka D, Malcolm S. (2018) “Importance of

Asymmetry and Anisotropy in Predicting Cortical Bone Response and Fracture Using
Human Body Model Femur in Three-Point Bending and Axial Rotation”. Journal of
the Mechanical Behavior of Biomedical Materials 87:213-229.
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Constitutive Models

* MLT anisotropic continuum damage mechanics model

* Includes: orthotropy, asymmetry, damage (w)
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H-1 gives coupling of damage modes in all directions
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Constitutive Models

* MLT anisotropic continuum damage mechanics model

* MMC effective strain to predict the onset of fracture
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Bone Model V&V

 The material models were verified with single

a o

element simulations (metal plasticity, MLT). Jerslcn CamprasSion TEEvres Shest
Tension
: : : VvV
* The losipescu sample was investigated, based A
on experimental data for cortical bone from Fractitemmﬁon T—_—
Tang (2015) and propagation

3-Point Bending Simulation
[50,51]

* The material model was applied to a HBM | =
femur model in 3-point bending and torsion.
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Material Directions

* Anisotropic model requires definition of material directions.

e Using nodal directions (node numbering) with invariant node
numbering option.

Thickness Direction

Circumferential Direction (green arrows)

Osteon Direction (red arrows)
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Results and Discussion
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CFRaC Model Tang 2015
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Results and Discussion: 3-Point Bending

CFracC predicted failure initiation

MLT Fracture initiation
\' location

L

Tension-wedge or butterfly fracture [redrawn from Carter & Spengler, 1982]
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Results and Discussion: Torsion

CFraC predicted failure initiation

Uk~ SN

Spiral fracture in torsion loading [redrawn from Carter & Spengler, 1982]
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Osteon Direction

Results and Discussion It /'_'m

Spiral fracture in torsion loadin

e CDM approach can provide a reasonable
approximation to loading, fracture
initiation and fracture pattern.

* Feasible for implementation in HBM.

e Careful consideration of meshing required
to represent material directions.

* Limitations
 More mixed mode experimental data needed.
* Mesh size dependency.
* Deformation rate effects.

Osteon Direction
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Summary and Contribution

* Contemporary HBMs using isotropic/plasticity material
models may predict tension-based fracture initiation.
* Lack of asymmetry can result in unphysical compressi
failure.
* Limited for other modes of loading (shear).

* CFraC constitutive model
 CDM model with triaxiality-based fracture initiation.
* Includes anisotropy and asymmetry.
* Predicted failure initiation, location, pattern.

* Potential for general applicability in hard tissue fracture
simulation.
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Constitutive Model Availability

 The CFraC constitutive model is implemented as a
User Material (UMAT) in LS-DYNA.

 The model is available as a shared library, that can
be integrated with current versions of the
commercial code.

* Please contact the author for more information.
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